Micro-X has successfully developed the world’s first carbon nanotube (CNT) based x-ray tube for medical applications. This unique technology achieves both the high x-ray current, and the stable x-ray output required for safe and effective medical imaging. The performance of Micro-X CNT tubes is achieved through two patented design features of the CNT emitter that differentiate the emitter for other field-emission emitters. In this presentation, Micro-X will present an overview of the emitter design and share emitter data demonstrating the high current and stable performance.
CNT x-rays are smaller and simpler compared to conventional x-ray tubes. CNT x-ray tubes are controlled by direct electronic voltage instead of the indirect thermionic control of conventional x-ray. These differences enable new imaging systems to be developed. In this presentation, Brian overviews the four different products Micro-X has designed taking advantage of the advantages of the CNT x-ray. This includes a lightweight mobile digital x-ray imaging system to bring x-ray directly to a patient bedside, an x-ray camera that creates two-dimensional x-ray backscatter images with the x-ray source and detector on a single side, a compact lightweight CT for early diagnosis of stroke, and a reimaged airport checkpoint based around a miniaturized CT baggage scanner.
(Hero image: A Micro-X carbon nanotube emitter viewed through a scanning electron microscope at 20,000x magnification)
More information can be found here:
International Organization of Medical Physics
Micro-X has successfully developed the world’s first carbon nanotube (CNT) based x-ray tube for medical applications. This unique technology achieves both the high x-ray current, and the stable x-ray output required for safe and effective medical imaging. The performance of Micro-X CNT tubes is achieved through two patented design features of the CNT emitter that differentiate the emitter for other field-emission emitters. In this presentation, Micro-X will present an overview of the emitter design and share emitter data demonstrating the high current and stable performance.
CNT x-rays are smaller and simpler compared to conventional x-ray tubes. CNT x-ray tubes are controlled by direct electronic voltage instead of the indirect thermionic control of conventional x-ray. These differences enable new imaging systems to be developed. In this presentation, Brian overviews the four different products Micro-X has designed taking advantage of the advantages of the CNT x-ray. This includes a lightweight mobile digital x-ray imaging system to bring x-ray directly to a patient bedside, an x-ray camera that creates two-dimensional x-ray backscatter images with the x-ray source and detector on a single side, a compact lightweight CT for early diagnosis of stroke, and a reimaged airport checkpoint based around a miniaturized CT baggage scanner.
(Hero image: A Micro-X carbon nanotube emitter viewed through a scanning electron microscope at 20,000x magnification)
More information can be found here:
International Organization of Medical Physics
Discover how the Micro-X Rover, a revolutionary portable X-ray system, is making its debut at the NCAA Final Four in San Antonio. Learn how it’s transforming sports medicine by delivering hospital-quality imaging directly to athletes.
From expanding the reach of our lightweight mobile X-ray solutions to progressing our game-changing CT imaging technology, 2025 will be about commercial success and delivering benefits to patients and clinicians globally.
See the presentation given by Chief Operating Officer Anthony Skeats to medical radiation professionals from across Australia and New Zealand on the development of miniaturised CT for stroke detection that can be retrofitted into a standard air or road ambulance.
Micro-X creates revolutionary X-ray technology to better lives.
Our PurposeFind out how Micro-X is creating new opportunities for industries across the world.
Find out moreThey’re the visionaries and innovators behind our X-ray technology, products, culture and ethos.
Meet the team